física cuántica

física cuántica
físico

domingo, 10 de noviembre de 2013

LA IMPLICACIÓN DE LA FILOSOFÍA CUÁNTICA.



La física aristotélica
Los filósofos de la naturaleza de la antigua Grecia no pretendían dar una explicación detallada de los mecanismos que rigen el comportamiento de la Naturaleza, y mucho menos aspiraban a lograr predicciones cuantitativas de resultados experimentales. Por contrario, buscaban analogías de los fenómenos naturales en términos más familiares, para lo que usaban frecuentemente el cuerpo del hombre, las relaciones humanas, los conflictos sociales, etc. Así, el magnetismo se podía describir como similar a la atracción que determinadas personas son capaces de ejercer sobre otras en virtud de una simpatía innata y que no todos poseen. Los conceptos de atracción y repulsión eran centrales en la ciencia pre-aristotélica, al ser tomados como agentes fundamentales de cambios en la Naturaleza.

La distinción entre materia, sujeto paciente de los cambios, y fuerzas, agentes de los mismos, ya es un hecho en la antigua ciencia griega hacia el siglo V a. C..

Se establecían cuatro tipos de causas de cambios, de las cuales, la causa eficiente se tomaba como fuente primaria de todo cambio, y representaba lo más parecido a lo que hoy llamamos acción o fuerza en un movimiento.

La "Física" de Aristóteles está dedicada fundamentalmente al estudio de las causas eficientes y su relación con el movimiento. Se desarrolla sobre la base de cuatro principios:
Negación del vacío. La existencia de espacios vacíos supondría velocidad infinita, por ser ésta inversamente proporcional a la resistencia del medio. Y dentro del esquema aristotélico no resultaba admisible la existencia de un móvil con esa propiedad.
Existencia de una causa eficiente en todo cambio. La causa eficiente se localizaba en la tendencia generalizada al "propio lugar", que no es sino la inclinación que todo cuerpo posee a ocupar el lugar que le corresponde por su propia naturaleza. Esta propensión al "propio lugar" ha sido interpretada, a veces, como una energía potencial introducida de forma rudimentaria; en otras, se ha visto como la primera insinuación de un modelo de acción a distancia, que sería la ejercida por la Tierra sobre los demás cuerpos.
Principio de la acción por contacto. En todos los movimientos, excepto en los naturales, debe existir como causa eficiente un agente en contacto con el objeto móvil. Se tomaba como resultado experimental, aunque aparecían dificultades concretas a la hora de explicar los movimientos de proyectiles, el magnetismo y las mareas. En los tres casos, el agente parecía operar a través de la continuidad del medio.
Existencia de un primer agente inmóvil. Carece de interés para el problema de las interacciones.

La Física de Descartes

El filósofo francés Descartes, comienza con una intrepidez sin límites, al crear todo un sistema del mundo en el que la materia se identificaba con el espacio, y no había lugar para el vacío. Así por el ejemplo el movimiento planterio alrededor del Sol se suponía se debía a vórtices de partículas que giraban alrededor del Sol, aunque el sistema cartesiano no trataba de explicar los detalles.

La ley fundamental del sistema de Descartes es la conservación del movimiento. Dios infundió al Universo cierta cantidad de movimiento, que continua inalterado. Para Descartes "movimiento" es momento (mv), prescindiendo del carácter direccional de la velocidad. Puede haber transferencia de movimiento entre partículas que chocan, pero nunca puede ser creado ni destruido. Esto es un claro antecedente de la primera ley de Newton, aunque existían diferencias de detalle importantes.

La causalidad física se reduce a un principio puramente mecánico: todo cambio es movimiento y toda alteración del movimiento se debe al contacto entre los cuerpos. Para Descartes la cuestión clave de la física, que nunca se había planteado hasta entonces, estribaba en las leyes de los choques entre los cuerpos, que él mismo formuló.
La Física de Newton

La física newtoniana tomaba como punto de partida un universo constituido por corpúsculos extensos y por espacio vacío. Cada uno de estos corpúsculos tenía la posibilidad de interactuar por contacto y también a distancia, ejerciendo fuerzas gravitatorias proporcionales a su masa e instantáneamente sobre los demás. Con este esquema básico, Newton desarrolló sus conocidas teorías sobre el movimiento y sobre la gravitación publicadas en 1686.

En los Principia mathematica de I. Newton se describe cómo las fuerzas producen movimiento:
La proporcionalidad entre la intensidad de la fuerza y la aceleración (segunda ley).
La ley de inercia (primera ley) por la cual un cuerpo se mantiene en su estado de movimiento si no actúan fuerzas sobre el mismo.
El principio de acción y reacción (tercera ley), por el que la fuerza que ejerce un cuerpo sobre un segundo cuerpo es igual y de sentido contrario al que ejerce el segundo sobre el primero.

La visión newtoniana del universo se completaba con la ley de la gravitación universal que describe la naturaleza de las fuerzas gravitatorias asociadas con los corpúsculos materiales. en esa teoría dichas fuerzas son siempre fuerzas atractivas y centrales, es decir, actúan según la recta que determinan sus respectivos centros. Newton estableció la variación cuantitativa de esta fuerza: resultaba ser directamente proporcional al producto de sus masas, e inversamente proporcional al cuadrado de la distancia que separa los centros de masa de los cuerpos.

Newton verificó que aplicando esta ley, podía calcular el movimiento de los planetas con gran aproximación y también, deducir correctamente las leyes descubiertas por Kepler y Galileo. La teoría de Newton era sorprendentemente superior, en la predicción de nuevos resultados, a cualquier teoría precedente en la historia del pensamiento humano.

La ley del inverso del cuadrado de la distancia está en perfecta consonancia con la metafísica de Newton porque tiene interpretación geométrica y parece seguirse del carácter mismo del espacio. Imaginemos una fuente luminosa de intensidad constante, o una fuente de la que brota agua en todas las direcciones, o una fuente de calor en un sólido uniforme. Imagínense dos esferas, una mayor que otra, concéntricas con la fuente. La luz, el agua y el calor se difundirán como se sigue de la geometría de las esferas, con una intensidad decreciente según la ley del inverso del cuadrado de la distancia.

La teoría newtoniana de la acción a distancia no involucra al medio y supone la existencia de corpúsculos, espacio vacío, fuerzas centrales actuando a distancia e interacción instantánea. Aunque, dentro del esquema newtoniano la ley de gravitación resultaba absolutamente coherente, hay que resaltar que para el propio Newton era ya patente la dificultad de su adaptación a otro tipo de interacción. No predecía nada sobre otros muchos modos de acción de un cuerpo sobre otro. No explicaba explícitamente, por ejemplo, la cohesión, fuerza que mantiene unidos a los cuerpos, ni tampoco las fuerzas eléctricas, magnéticas, ni multitud de procesos físico-químicos. Se confiaba que este modelo sirviera de base para el estudio de otros fenómenos, como laelectricidad.



Las modificaciones de Leibniz.

Gottfried Leibniz (1646-1716) se replanteó el modelo de Descartes para los choques de partículas en varios aspectos fundamentales, por ejemplo, para explicar la impenetrabilidad de los cuerpos. Si los cuerpos son objetos meramente geométricos, ¿por qué no se atraviesan, como podemos imaginar que sucede con los objetos geométricos? La pregunta no tenía solución dentro del sistema de Descartes. Para contestarla era necesario considerar junto con la extensión, la fuerza como otra propiedad esencial de la materia. La fuerza debería ser repulsiva para resistir la penetración. Leibniz arguye además que hay que asignar fuerzas a todos los puntos de la materia, y no solo a partículas de tamaño finito.

Esta nueva concepción del espacio como un continuo de puntos materiales con fuerza asociada, encontró fuerte oposición por parte de los partidarios de la física newtoniana basada como ya se ha indicado en corpúsculos, vacío y acción a distancia.

En el siglo XVII, la filosofía del espacio y el tiempo se convirtió en una cuestión central de la metafísica y la epistemología. La discusión alcanzó un punto culminante en el importante debate entre G. Leibniz, el gran filósofo y matemático alemán, y Newton, el gran físico y matemático inglés. En su debate se perfilaron dos teorías contrarias acerca del lugar del espacio y el tiempo en el mundo, y muchas de las cuestiones fundamentales que en los años posteriores ocuparon a los filósofos interesados en el espacio y el tiempo recibieron su formulación más clara.

La idea sencilla de Leibniz es que el tiempo es justamente la colección de todas las relaciones temporales de esa índole entre los sucesos. Si no hubiera sucesos, no habría relaciones, de manera que el tiempo en el sentido indicado carece de una existencia independiente de los sucesos en él. Pero las relaciones entre los sucesos son una componente real en el mundo, así, sería erróneo decir que no hay en absoluto una tal cosa llamada el tiempo.

El oponente de Leibniz, el gran físico Newton, fue un antirrelacionista. Newton considera al espacio y al tiempo como más que meras relaciones espaciales y temporales entre los objetos y los sucesos materiales. Qué era exactamente este algo más, no podía decirlo con seguridad. Considera que es algo similar a la sustancia, pero en ocasiones prefiere pensar que es un atributo o propiedad, de hecho una propiedad de Dios. Aunque aporta algunos argumentos puramente filosóficos en contra del relacionismo leibniziano, Newton es famoso principalmente por sostener que los resultados de la observación y del experimento pueden refutar de manera concluyente la doctrina relacionista.
La síntesis de Kant.

Tanto Boscovich como Kant intentaron sintetizar las suposiciones básicas de Newton y Leibniz, para unir la contundente ciencia de Newton con la persuasiva metafísica de Leibniz. Ambos abandonaron la idea de que el mundo está lleno, que es un campo de materia o de fuerzas. Sin embargo, fue a través de su influencia como Faraday llegó a establecer su teoría de los campos de fuerzas.

El espacio está constituido por una parte vacía y fuerzas de diferente índole. Las fuerzas repulsivas ocupan regiones del espacio, donde actúan sobre puntos contiguos; en cambio, no actúan a distancia. Las fuerzas atractivas, por el contrario, se ejercen a distancia y no ocupan el espacio a través del cual actúan. Un cuerpo material es una región continua del espacio con fuerzas repulsivas en cada punto y bordeado por el vacío, con lo que el cuerpo tiende a expandirse. Pero los mismos puntos llevan asociados fuerzas atractivas que actúan a distancia. La estabilidad observada, y la misma densidad se explicaban como resultado del balance: repulsión por contacto, atracción a distancia y era propio de cada objeto.

No hay comentarios:

Publicar un comentario